Exercise 105

A window has the shape of a square surmounted by a semicircle. The base of the window is measured as having width 60 cm with a possible error in measurement of 0.1 cm . Use differentials to estimate the maximum error possible in computing the area of the window.

Solution

Draw a schematic of the window.

The area is

$$
\begin{aligned}
A & =x^{2}+\frac{1}{2} \pi\left(\frac{x}{2}\right)^{2} \\
& =x^{2}+\frac{1}{2} \pi\left(\frac{x^{2}}{4}\right) \\
& =x^{2}+\frac{\pi x^{2}}{8} \\
& =\frac{1}{8}(8+\pi) x^{2} .
\end{aligned}
$$

Take the derivative.

$$
\begin{aligned}
\frac{d A}{d x} & =\frac{d}{d x}\left[\frac{1}{8}(8+\pi) x^{2}\right] \\
& =\frac{1}{8}(8+\pi)(2 x) \\
& =\frac{1}{4}(8+\pi) x
\end{aligned}
$$

As a result, the differential of area is

$$
d A=\frac{1}{4}(8+\pi) x d x
$$

If $x=60$ and $d x=0.1$, then the maximum possible error in computing the area is

$$
d A=\frac{1}{4}(8+\pi)(60)(0.1)=12+\frac{3 \pi}{2} \approx 16.7124 \mathrm{~cm}^{2} .
$$

